Serveur d'exploration Phytophthora

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Overexpression of Nictaba-Like Lectin Genes from Glycine max Confers Tolerance toward Pseudomonas syringae Infection, Aphid Infestation and Salt Stress in Transgenic Arabidopsis Plants.

Identifieur interne : 000B63 ( Main/Exploration ); précédent : 000B62; suivant : 000B64

Overexpression of Nictaba-Like Lectin Genes from Glycine max Confers Tolerance toward Pseudomonas syringae Infection, Aphid Infestation and Salt Stress in Transgenic Arabidopsis Plants.

Auteurs : Sofie Van Holle [Belgique] ; Guy Smagghe [Belgique] ; Els J M. Van Damme [Belgique]

Source :

RBID : pubmed:27826309

Abstract

Plants have evolved a sophisticated immune system that allows them to recognize invading pathogens by specialized receptors. Carbohydrate-binding proteins or lectins are part of this immune system and especially the lectins that reside in the nucleocytoplasmic compartment are known to be implicated in biotic and abiotic stress responses. The class of Nictaba-like lectins (NLL) groups all proteins with homology to the tobacco (Nicotiana tabacum) lectin, known as a stress-inducible lectin. Here we focus on two Nictaba homologs from soybean (Glycine max), referred to as GmNLL1 and GmNLL2. Confocal laser scanning microscopy of fusion constructs with the green fluorescent protein either transiently expressed in Nicotiana benthamiana leaves or stably transformed in tobacco BY-2 suspension cells revealed a nucleocytoplasmic localization for the GmNLLs under study. RT-qPCR analysis of the transcript levels for the Nictaba-like lectins in soybean demonstrated that the genes are expressed in several tissues throughout the development of the plant. Furthermore, it was shown that salt treatment, Phytophthora sojae infection and Aphis glycines infestation trigger the expression of particular NLL genes. Stress experiments with Arabidopsis lines overexpressing the NLLs from soybean yielded an enhanced tolerance of the plant toward bacterial infection (Pseudomonas syringae), insect infestation (Myzus persicae) and salinity. Our data showed a better performance of the transgenic lines compared to wild type plants, indicating that the NLLs from soybean are implicated in the stress response. These data can help to further elucidate the physiological importance of the Nictaba-like lectins from soybean, which can ultimately lead to the design of crop plants with a better tolerance to changing environmental conditions.

DOI: 10.3389/fpls.2016.01590
PubMed: 27826309
PubMed Central: PMC5078610


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Overexpression of
<i>Nictaba</i>
-Like Lectin Genes from
<i>Glycine max</i>
Confers Tolerance toward
<i>Pseudomonas syringae</i>
Infection, Aphid Infestation and Salt Stress in Transgenic
<i>Arabidopsis</i>
Plants.</title>
<author>
<name sortKey="Van Holle, Sofie" sort="Van Holle, Sofie" uniqKey="Van Holle S" first="Sofie" last="Van Holle">Sofie Van Holle</name>
<affiliation wicri:level="1">
<nlm:affiliation>Laboratory of Biochemistry and Glycobiology, Department of Molecular Biotechnology, Ghent University Ghent, Belgium.</nlm:affiliation>
<country xml:lang="fr">Belgique</country>
<wicri:regionArea>Laboratory of Biochemistry and Glycobiology, Department of Molecular Biotechnology, Ghent University Ghent</wicri:regionArea>
<wicri:noRegion>Ghent University Ghent</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Smagghe, Guy" sort="Smagghe, Guy" uniqKey="Smagghe G" first="Guy" last="Smagghe">Guy Smagghe</name>
<affiliation wicri:level="1">
<nlm:affiliation>Laboratory of Agrozoology, Department of Crop Protection, Ghent University Ghent, Belgium.</nlm:affiliation>
<country xml:lang="fr">Belgique</country>
<wicri:regionArea>Laboratory of Agrozoology, Department of Crop Protection, Ghent University Ghent</wicri:regionArea>
<wicri:noRegion>Ghent University Ghent</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Van Damme, Els J M" sort="Van Damme, Els J M" uniqKey="Van Damme E" first="Els J M" last="Van Damme">Els J M. Van Damme</name>
<affiliation wicri:level="1">
<nlm:affiliation>Laboratory of Biochemistry and Glycobiology, Department of Molecular Biotechnology, Ghent University Ghent, Belgium.</nlm:affiliation>
<country xml:lang="fr">Belgique</country>
<wicri:regionArea>Laboratory of Biochemistry and Glycobiology, Department of Molecular Biotechnology, Ghent University Ghent</wicri:regionArea>
<wicri:noRegion>Ghent University Ghent</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2016">2016</date>
<idno type="RBID">pubmed:27826309</idno>
<idno type="pmid">27826309</idno>
<idno type="doi">10.3389/fpls.2016.01590</idno>
<idno type="pmc">PMC5078610</idno>
<idno type="wicri:Area/Main/Corpus">000A86</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000A86</idno>
<idno type="wicri:Area/Main/Curation">000A86</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000A86</idno>
<idno type="wicri:Area/Main/Exploration">000A86</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Overexpression of
<i>Nictaba</i>
-Like Lectin Genes from
<i>Glycine max</i>
Confers Tolerance toward
<i>Pseudomonas syringae</i>
Infection, Aphid Infestation and Salt Stress in Transgenic
<i>Arabidopsis</i>
Plants.</title>
<author>
<name sortKey="Van Holle, Sofie" sort="Van Holle, Sofie" uniqKey="Van Holle S" first="Sofie" last="Van Holle">Sofie Van Holle</name>
<affiliation wicri:level="1">
<nlm:affiliation>Laboratory of Biochemistry and Glycobiology, Department of Molecular Biotechnology, Ghent University Ghent, Belgium.</nlm:affiliation>
<country xml:lang="fr">Belgique</country>
<wicri:regionArea>Laboratory of Biochemistry and Glycobiology, Department of Molecular Biotechnology, Ghent University Ghent</wicri:regionArea>
<wicri:noRegion>Ghent University Ghent</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Smagghe, Guy" sort="Smagghe, Guy" uniqKey="Smagghe G" first="Guy" last="Smagghe">Guy Smagghe</name>
<affiliation wicri:level="1">
<nlm:affiliation>Laboratory of Agrozoology, Department of Crop Protection, Ghent University Ghent, Belgium.</nlm:affiliation>
<country xml:lang="fr">Belgique</country>
<wicri:regionArea>Laboratory of Agrozoology, Department of Crop Protection, Ghent University Ghent</wicri:regionArea>
<wicri:noRegion>Ghent University Ghent</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Van Damme, Els J M" sort="Van Damme, Els J M" uniqKey="Van Damme E" first="Els J M" last="Van Damme">Els J M. Van Damme</name>
<affiliation wicri:level="1">
<nlm:affiliation>Laboratory of Biochemistry and Glycobiology, Department of Molecular Biotechnology, Ghent University Ghent, Belgium.</nlm:affiliation>
<country xml:lang="fr">Belgique</country>
<wicri:regionArea>Laboratory of Biochemistry and Glycobiology, Department of Molecular Biotechnology, Ghent University Ghent</wicri:regionArea>
<wicri:noRegion>Ghent University Ghent</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Frontiers in plant science</title>
<idno type="ISSN">1664-462X</idno>
<imprint>
<date when="2016" type="published">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Plants have evolved a sophisticated immune system that allows them to recognize invading pathogens by specialized receptors. Carbohydrate-binding proteins or lectins are part of this immune system and especially the lectins that reside in the nucleocytoplasmic compartment are known to be implicated in biotic and abiotic stress responses. The class of Nictaba-like lectins (NLL) groups all proteins with homology to the tobacco (
<i>Nicotiana tabacum</i>
) lectin, known as a stress-inducible lectin. Here we focus on two Nictaba homologs from soybean (
<i>Glycine max</i>
), referred to as
<i>Gm</i>
NLL1 and
<i>Gm</i>
NLL2. Confocal laser scanning microscopy of fusion constructs with the green fluorescent protein either transiently expressed in
<i>Nicotiana benthamiana</i>
leaves or stably transformed in tobacco BY-2 suspension cells revealed a nucleocytoplasmic localization for the
<i>Gm</i>
NLLs under study. RT-qPCR analysis of the transcript levels for the Nictaba-like lectins in soybean demonstrated that the genes are expressed in several tissues throughout the development of the plant. Furthermore, it was shown that salt treatment,
<i>Phytophthora sojae</i>
infection and
<i>Aphis glycines</i>
infestation trigger the expression of particular
<i>NLL</i>
genes. Stress experiments with
<i>Arabidopsis</i>
lines overexpressing the
<i>NLLs</i>
from soybean yielded an enhanced tolerance of the plant toward bacterial infection (
<i>Pseudomonas syringae</i>
), insect infestation (
<i>Myzus persicae</i>
) and salinity. Our data showed a better performance of the transgenic lines compared to wild type plants, indicating that the NLLs from soybean are implicated in the stress response. These data can help to further elucidate the physiological importance of the Nictaba-like lectins from soybean, which can ultimately lead to the design of crop plants with a better tolerance to changing environmental conditions.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">27826309</PMID>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>30</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">1664-462X</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>7</Volume>
<PubDate>
<Year>2016</Year>
</PubDate>
</JournalIssue>
<Title>Frontiers in plant science</Title>
<ISOAbbreviation>Front Plant Sci</ISOAbbreviation>
</Journal>
<ArticleTitle>Overexpression of
<i>Nictaba</i>
-Like Lectin Genes from
<i>Glycine max</i>
Confers Tolerance toward
<i>Pseudomonas syringae</i>
Infection, Aphid Infestation and Salt Stress in Transgenic
<i>Arabidopsis</i>
Plants.</ArticleTitle>
<Pagination>
<MedlinePgn>1590</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Plants have evolved a sophisticated immune system that allows them to recognize invading pathogens by specialized receptors. Carbohydrate-binding proteins or lectins are part of this immune system and especially the lectins that reside in the nucleocytoplasmic compartment are known to be implicated in biotic and abiotic stress responses. The class of Nictaba-like lectins (NLL) groups all proteins with homology to the tobacco (
<i>Nicotiana tabacum</i>
) lectin, known as a stress-inducible lectin. Here we focus on two Nictaba homologs from soybean (
<i>Glycine max</i>
), referred to as
<i>Gm</i>
NLL1 and
<i>Gm</i>
NLL2. Confocal laser scanning microscopy of fusion constructs with the green fluorescent protein either transiently expressed in
<i>Nicotiana benthamiana</i>
leaves or stably transformed in tobacco BY-2 suspension cells revealed a nucleocytoplasmic localization for the
<i>Gm</i>
NLLs under study. RT-qPCR analysis of the transcript levels for the Nictaba-like lectins in soybean demonstrated that the genes are expressed in several tissues throughout the development of the plant. Furthermore, it was shown that salt treatment,
<i>Phytophthora sojae</i>
infection and
<i>Aphis glycines</i>
infestation trigger the expression of particular
<i>NLL</i>
genes. Stress experiments with
<i>Arabidopsis</i>
lines overexpressing the
<i>NLLs</i>
from soybean yielded an enhanced tolerance of the plant toward bacterial infection (
<i>Pseudomonas syringae</i>
), insect infestation (
<i>Myzus persicae</i>
) and salinity. Our data showed a better performance of the transgenic lines compared to wild type plants, indicating that the NLLs from soybean are implicated in the stress response. These data can help to further elucidate the physiological importance of the Nictaba-like lectins from soybean, which can ultimately lead to the design of crop plants with a better tolerance to changing environmental conditions.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Van Holle</LastName>
<ForeName>Sofie</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Laboratory of Biochemistry and Glycobiology, Department of Molecular Biotechnology, Ghent University Ghent, Belgium.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Smagghe</LastName>
<ForeName>Guy</ForeName>
<Initials>G</Initials>
<AffiliationInfo>
<Affiliation>Laboratory of Agrozoology, Department of Crop Protection, Ghent University Ghent, Belgium.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Van Damme</LastName>
<ForeName>Els J M</ForeName>
<Initials>EJ</Initials>
<AffiliationInfo>
<Affiliation>Laboratory of Biochemistry and Glycobiology, Department of Molecular Biotechnology, Ghent University Ghent, Belgium.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2016</Year>
<Month>10</Month>
<Day>25</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Front Plant Sci</MedlineTA>
<NlmUniqueID>101568200</NlmUniqueID>
<ISSNLinking>1664-462X</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Aphis glycines</Keyword>
<Keyword MajorTopicYN="N">Myzus persicae</Keyword>
<Keyword MajorTopicYN="N">Nictaba</Keyword>
<Keyword MajorTopicYN="N">Phytophthora sojae</Keyword>
<Keyword MajorTopicYN="N">Pseudomonas syringae</Keyword>
<Keyword MajorTopicYN="N">lectin</Keyword>
<Keyword MajorTopicYN="N">salt stress</Keyword>
<Keyword MajorTopicYN="N">soybean</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2016</Year>
<Month>09</Month>
<Day>07</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2016</Year>
<Month>10</Month>
<Day>07</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2016</Year>
<Month>11</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2016</Year>
<Month>11</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>11</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">27826309</ArticleId>
<ArticleId IdType="doi">10.3389/fpls.2016.01590</ArticleId>
<ArticleId IdType="pmc">PMC5078610</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Microsc. 2006 Dec;224(Pt 3):213-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17210054</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Open Bio. 2012 Jun 20;2:151-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23650594</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Physiol. 2014 Jul 15;171(12):986-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24974324</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Transgenic Res. 2009 Apr;18(2):249-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18720022</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2010 Jul 01;6:e1000970</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20617163</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2003 Mar;15(3):760-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12615947</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(9):e46487</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23029532</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods. 2010 Apr;50(4):227-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19969088</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol Biochem. 2011 Aug;49(8):843-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21570857</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2009 Jun;50(6):1142-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19416954</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2011 Mar;155(3):1091-102</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21224338</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2011 Aug;23(8):2809-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21841124</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2012 Mar 13;13(4):227-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22411467</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Physiol. 2014 Aug 15;171(13):1149-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24973587</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1998 Dec;16(6):735-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10069079</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Sci. 2015 Sep;238:312-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26259197</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plants (Basel). 2014 Oct 15;3(4):458-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27135514</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arabidopsis Book. 2002;1:e0039</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22303207</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2006 Nov 27;580(27):6329-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17084390</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2000 Jul 21;300(4):1005-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10891285</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Molecules. 2015 Feb 11;20(2):2868-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25679048</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2006 Aug;9(4):436-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16759898</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2014 Jan 10;15:18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24410936</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2006;1(4):2019-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17487191</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS J. 2011 Jun;278(12):2064-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21481190</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Physiol. 2015 Mar 15;176:47-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25546584</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Glycoconj J. 2010 Aug;27(6):613-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20721621</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2009 Aug 22;9:111</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19698127</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2006 Nov 16;444(7117):323-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17108957</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2011 Sep 29;8(10):785-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21959131</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2014 Aug 13;5:397</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25165467</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2015 Feb;66(2):449-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25416793</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2010 Aug 05;10:160</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20687943</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Rep. 2014 Aug;41(8):4899-909</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24737571</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Mol Biol. 2009 Sep 28;10:93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19785741</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2002 May;7(5):193-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11992820</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Traffic. 2005 Mar;6(3):187-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15702987</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2014 May 16;5:170</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24904597</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1995 Oct;109(2):347-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7480335</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2015 Jul;34(7):1263-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25906415</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2003 Sep;53(1-2):201-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14756317</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2007 Aug;48(8):1207-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17623741</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2012 Jun 28;9(7):676-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22743772</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2007 Jul;20(7):781-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17601166</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2010 Feb;61(4):1003-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20018900</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2015 Aug;26:26-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26051215</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Glycoconj J. 2004;20(7-8):449-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15316278</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FASEB J. 2002 Jun;16(8):905-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12039875</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Lett. 2003 Nov 21;228(2):241-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14638430</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2002 May 1;30(9):e36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11972351</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2012 Jun;63(10):3523-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22467407</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Photosynth Res. 2002;73(1-3):149-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16245116</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Protein Pept Sci. 2015;16(1):5-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25692844</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2010 Feb;1800(2):190-201</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19647040</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2011 Oct 14;414(1):101-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21945438</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1996 Aug;8(8):1225-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8776893</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2016 Oct 4;16(1):213</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27716048</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2007;8(2):R19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17291332</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Methods. 2006 Nov 06;2:19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17087829</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Belgique</li>
</country>
</list>
<tree>
<country name="Belgique">
<noRegion>
<name sortKey="Van Holle, Sofie" sort="Van Holle, Sofie" uniqKey="Van Holle S" first="Sofie" last="Van Holle">Sofie Van Holle</name>
</noRegion>
<name sortKey="Smagghe, Guy" sort="Smagghe, Guy" uniqKey="Smagghe G" first="Guy" last="Smagghe">Guy Smagghe</name>
<name sortKey="Van Damme, Els J M" sort="Van Damme, Els J M" uniqKey="Van Damme E" first="Els J M" last="Van Damme">Els J M. Van Damme</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PhytophthoraV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000B63 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000B63 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PhytophthoraV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:27826309
   |texte=   Overexpression of Nictaba-Like Lectin Genes from Glycine max Confers Tolerance toward Pseudomonas syringae Infection, Aphid Infestation and Salt Stress in Transgenic Arabidopsis Plants.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:27826309" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PhytophthoraV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 11:20:57 2020. Site generation: Wed Mar 6 16:48:20 2024